

Dominic Spill
dominicgs@gmail.com

Bluetooth Packet Sniffing Using
Project Ubertooth

mailto:dominicgs@gmail.com

Dominic Spill

● Bluesniff: Eve meets Alice
and Bluetooth
– Usenix WOOT 07

● Building a Bluetooth monitor
– Shmoo/Defcon/Toorcamp 09

– With Michael Ossmann

● Lead on project Ubertooth

Disclosure

● Not an employee of GSG

● I receive some funding

● Not here to sell Ubertooths

Ubertooth

Ubertooth

● Designed by Michael Ossmann
● 2.4GHz experimentation platform
● Bluetooth 1.x, Low energy, 802.11 FHSS
● Hardware

– CC2400 (+CC2591 frontend)

– NXP LPC1756

– USB device (2.0)

● Open source software and hardware
– http://ubertooth.sourceforge.net

Spot the difference?

Bluetooth

Bluetooth

● 2.4GHz ISM band
● Variable data rates

– Basic Rate – 1Mb/s

– Enhanced Data Rate – 3Mb/s

– High Speed - Alternate MAC/PHY – 24Mb/s

– LE (Smart) – 200Kb/s

● FHSS @ 1600Hz
– 79 channels

Bluetooth - Terminology
● Bluetooth device address / MAC / BD_ADDR

– Three parts, not all present in packets
● LAP - Lower – lowest 24 bits
● UAP - Upper – next 8 bits
● NAP - Non-significant – top 16 bits

● CLKN
– 27bit 3200Hz internal clock

– Increments twice per time slot

Bluetooth - Terminology
● Access code

– Derived from LAP

● Packet Header
– Error check based on UAP

● Payload
– Possibly encrypted

– CRC also based on UAP

Bluetooth - Terminology

● Non-Discoverable mode
– Does not respond to inquiry scans

– Still responds to page scans

– Some newer devices ignore unknown page scans

● Data whitening
– Packets XOR'd with pseudo-random sequence

Bluetooth sniffing is hard

● No “monitor mode”
– Fixed correlator – not promiscuous

● Frequency hopping
– 1600 hops/s

– 625us/packet

– Pattern based on MAC and CLKN

● Data whitening
– PRNG initialised with CLK1-6

Finding Packets – Old method

● Find access code
– Treat 64bit chunks as possible access codes

– LAP stored in bits 34-57

● Check access code
– Check trailer (2 errors)

– Generate access code from LAP

– Compare access code to 64bit chunk (6 errors)

Flaws

● Slow on desktop CPU
● Unworkable on low power devices
● No errors allowed in LAP
● No error correction

Error Correction

Error Correction

● (64, 30) expurgated block code
– Based on BCH (63, 30) code

– Calculate syndromes to find error vectors

● Supposed to correct up to 6 bit errors
– Too many false positive results

– Realistically correct <4 bit errors

Error Correction

● Manufacturers don't implement it

– Known access code loaded into correlator
– Compared to received bits
– Up to 6 bit errors

● This is what we do for a known address

Finding Packets – New Method

● Pre-calculate syndromes for n-bit errors
– Use known access code

– XOR with all possible n-bit error vectors

– Generate syndrome for each error

– Store in hash (uthash rules!)

● For each 64bit block
– Calculate syndrome

– Check hash for error vector

– Correct error

Finding Packets – New Method

Demo

Frequency Hopping

Frequency Hopping – Local Device

● Ubertooth-follow
– Follow a local Bluetooth device

– Use bluez to extract CLKN

– Upload to Ubertooth

– Start hopping

● Demo

Frequency Hopping – Local Device

● Pros
– Reliable

– Potentially sniff pairing

● Cons
– Master device must be local

– No AFH support
● Expected soon

– Clock drift causes problems
● This is fixable

Frequency Hopping – Any Device

● Derive CLKN from received packets
– Calculate hopping pattern for known address

– Sniff single channel or hop randomly

– Observe packets, timing and channel

– Place packets in hopping pattern

– Yields unique CLKN

● Calculate clock offset from CLKN → Ubertooth
● Send to Ubertooth
● Follow hopping piconet

Frequency Hopping – Any Device

● Ubertooth-hop
– Follow a remote piconet

– Given LAP and UAP

– Finds clock offset and hops

● Demo

Caveats

● Adaptive Frequency Hopping
– Coming soon

● Encryption
– PIN – BTCrack

– SSP – Much harder

– Need to sniff pairing for both

Kismet Plugin

● Plugin for current and upcoming Kismet
● Dual mode

– Survey – static or hopping

– Follow

● Demo

Wireshark Plugin

Demo

Bluetooth Smart

● AKA
– Bluetooth Low Energy

– Bluetooth 4.0

– Wibree

● Much simpler protocol
● Mike Ryan has just started working on this

– Sniffing connection phase

– Sniffing some data

Thanks to...

● Michael Ossmann
● Jared Boone
● Mike Kershaw (dragorn)
● “Will Code”
● Mike Ryan

Questions?

dominicgs@gmail.com
Twitter: dominicgs

Slides: dominicspill.com/ruxcon/2012.pdf

mailto:dominicgs@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

