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Dominic Spill

● Bluesniff: Eve meets Alice 
and Bluetooth
– Usenix WOOT 07

● Building a Bluetooth monitor
– Shmoo/Defcon/Toorcamp 09

– With Michael Ossmann

● Lead on project Ubertooth



  

Disclosure

● Not an employee of GSG

● I receive some funding

● Not here to sell Ubertooths



  

Ubertooth



  

Ubertooth

● Designed by Michael Ossmann
● 2.4GHz experimentation platform
● Bluetooth 1.x, Low energy, 802.11 FHSS
● Hardware

– CC2400 (+CC2591 frontend)

– NXP LPC1756

– USB device (2.0)

● Open source software and hardware
– http://ubertooth.sourceforge.net



  

Spot the difference?



  

Bluetooth



  

Bluetooth

● 2.4GHz ISM band
● Variable data rates

– Basic Rate – 1Mb/s

– Enhanced Data Rate – 3Mb/s

– High Speed - Alternate MAC/PHY – 24Mb/s

– LE (Smart) – 200Kb/s

● FHSS @ 1600Hz
– 79 channels



  

Bluetooth - Terminology
● Bluetooth device address / MAC / BD_ADDR

– Three parts, not all present in packets
● LAP - Lower – lowest 24 bits
● UAP - Upper – next 8 bits
● NAP - Non-significant – top 16 bits

● CLKN
– 27bit 3200Hz internal clock

– Increments twice per time slot



  

Bluetooth - Terminology
● Access code

– Derived from LAP

● Packet Header
– Error check based on UAP

● Payload
– Possibly encrypted

– CRC also based on UAP



  

Bluetooth - Terminology

● Non-Discoverable mode
– Does not respond to inquiry scans

– Still responds to page scans

– Some newer devices ignore unknown page scans

● Data whitening
– Packets XOR'd with pseudo-random sequence



  

Bluetooth sniffing is hard

● No “monitor mode”
– Fixed correlator – not promiscuous

● Frequency hopping
– 1600 hops/s

– 625us/packet

– Pattern based on MAC and CLKN

● Data whitening
– PRNG initialised with CLK1-6



  

Finding Packets – Old method

● Find access code
– Treat 64bit chunks as possible access codes

– LAP stored in bits 34-57

● Check access code
– Check trailer (2 errors)

– Generate access code from LAP

– Compare access code to 64bit chunk (6 errors)



  

Flaws

● Slow on desktop CPU
● Unworkable on low power devices
● No errors allowed in LAP
● No error correction



  

Error Correction



  

Error Correction

● (64, 30) expurgated block code
– Based on BCH (63, 30) code

– Calculate syndromes to find error vectors

● Supposed to correct up to 6 bit errors
– Too many false positive results

– Realistically correct <4 bit errors



  

Error Correction

● Manufacturers don't implement it

– Known access code loaded into correlator
– Compared to received bits
– Up to 6 bit errors

● This is what we do for a known address



  

Finding Packets – New Method

● Pre-calculate syndromes for n-bit errors
– Use known access code

– XOR with all possible n-bit error vectors

– Generate syndrome for each error

– Store in hash (uthash rules!)

● For each 64bit block
– Calculate syndrome

– Check hash for error vector

– Correct error



  

Finding Packets – New Method

Demo



  

Frequency Hopping



  

Frequency Hopping – Local Device

● Ubertooth-follow
– Follow a local Bluetooth device

– Use bluez to extract CLKN

– Upload to Ubertooth

– Start hopping

● Demo



  

Frequency Hopping – Local Device

● Pros
– Reliable

– Potentially sniff pairing

● Cons
– Master device must be local

– No AFH support
● Expected soon

– Clock drift causes problems
● This is fixable



  

Frequency Hopping – Any Device

● Derive CLKN from received packets
– Calculate hopping pattern for known address

– Sniff single channel or hop randomly

– Observe packets, timing and channel

– Place packets in hopping pattern

– Yields unique CLKN

● Calculate clock offset from CLKN → Ubertooth
● Send to Ubertooth
● Follow hopping piconet



  

Frequency Hopping – Any Device

● Ubertooth-hop
– Follow a remote piconet

– Given LAP and UAP

– Finds clock offset and hops

● Demo



  

Caveats

● Adaptive Frequency Hopping
– Coming soon

● Encryption
– PIN – BTCrack

– SSP – Much harder

– Need to sniff pairing for both



  

Kismet Plugin

● Plugin for current and upcoming Kismet
● Dual mode

– Survey – static or hopping

– Follow

● Demo



  

Wireshark Plugin

Demo



  

Bluetooth Smart

● AKA
– Bluetooth Low Energy

– Bluetooth 4.0

– Wibree

● Much simpler protocol
● Mike Ryan has just started working on this

– Sniffing connection phase

– Sniffing some data



  

Thanks to...

● Michael Ossmann
● Jared Boone
● Mike Kershaw (dragorn)
● “Will Code”
● Mike Ryan



  

Questions?

dominicgs@gmail.com
Twitter: dominicgs

Slides: dominicspill.com/ruxcon/2012.pdf
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